Protein Denaturation with Guanidinium: A 2D-IR Study

نویسندگان

  • Adriana Huerta-Viga
  • Sander Woutersen
چکیده

Guanidinium (Gdm+) is a widely used denaturant, but it is still largely unknown how it operates at the molecular level. In particular, the effect of guanidinium on the different types of secondary structure motifs of proteins is at present not clear. Here, we use two-dimensional infrared spectroscopy (2D-IR) to investigate changes in the secondary structure of two proteins with mainly α-helical or β-sheet content upon addition of Gdm-13C15N3·Cl. We find that upon denaturation, the β-sheet protein shows a complete loss of β-sheet structure, whereas the α-helical protein maintains most of its secondary structure. These results suggest that Gdm+ disrupts β-sheets much more efficiently than α-helices, possibly because in the former, hydrophobic interactions are more important and the number of dangling hydrogen bonds is larger.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A 2D-IR study of heat- and [(13)C]urea-induced denaturation of sarcoplasmic reticulum Ca(2+)-ATPase.

Two-dimensional infrared correlation spectroscopy (2D-IR) was applied to the study of urea- and heat-induced unfolding denaturation of sarcoplasmic reticulum Ca(2+)-ATPase (SR ATPase). Urea at 2-3 M causes reversible loss of SR ATPase activity, while higher concentrations induce irreversible denaturation. Heat-induced denaturation is a non-two-state process, with an "intermediate state" (at t a...

متن کامل

Molecular dynamics studies on the denaturation of polyalanine in the presence of guanidinium chloride at low concentration

Molecular dynamic simulation is a powerful method that monitors all variations in the atomic level in explicit solvent. By this method we can calculate many chemical and biochemical properties of large scale biological systems. In this work all-atom molecular dynamics simulation of polyalanine (PA) was investigated in the presence of 0.224, 0.448, 0.673, 0.897 and 1.122 M of guanidinium chlorid...

متن کامل

A salt-bridge structure in solution revealed by 2D-IR spectroscopy.

Salt bridges are important interactions for the stability of protein conformations, but up to now it has been difficult to determine salt-bridge geometries in solution. Here we characterize the spatial structure of a salt bridge between guanidinium (Gdm(+)) and acetate (Ac(-)) using two-dimensional vibrational (2D-IR) spectroscopy. We find that as a result of salt bridge formation there is a si...

متن کامل

Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: lessons for protein denaturation mechanism.

In order to clarify the mechanism of denaturant-induced unfolding of proteins we have calculated the interactions between hydrophobic and ionic species in aqueous guanidinium chloride and urea solutions using molecular dynamics simulations. Hydrophobic association is not significantly changed in urea or guanidinium chloride solutions. The strength of interaction between ion pairs is greatly dim...

متن کامل

Denaturation/Renaturation of Organophosphorus Acid Anhydrolase (OPAA) Using Guanidinium Hydrochloride and Urea

The understanding of how protein unfolds/refolds is a key to the development of any protein/enzyme based detection system. Using organophosphorus acid anhydrolase (OPAA) as the model protein, a guanidinium hydrochloride and urea denaturation/renaturation study was conducted and measured both optically and enzymatically. As expected, the highly autofluorescent tryptophan moiety (Ex. 280/Em. 340n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013